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In standard physics quantum field theory is based on a flat vacuum space-time. 
This quantum field theory predicts a nonzero cosmological constant. Hence the 
gravitational field equations do not admit a flat vacuum space-time. This 
dilemma is resolved using the units covariant gravitational field equations. This 
paper shows that the field equations admit a flat vacuum space-time with 
nonzero cosmological constant if and only if the canonical LNH is valid. This 
allows an interpretation of the LNH phenomena in terms of a time-dependent 
vacuum state. If this is correct then the cosmological constant must be positive. 

1. I N T R O D U C T I O N  

This is Paper IV in a series seeking to explore the consequences for 
physics of developing a viable, self-consistent physical theory incorporat ing 
Dirac 's  (1937) large numbers  hypothesis  (LNH).  This paper  notes an 
intimate relationship between the cosmological  constant  A and quan tum 
field theory. In particular, while quan tum field theory based on a flat 
space-time allows one to predict  a nonzero value for A (DeWitt ,  1975; 
Kirzhnitz and Linde, 1976; Linde, 1979), the gravitational field equations of 
general relativity do not admit  a flat vacuum space-time if A * 0. 

This di lemma can be resolved in the units covariant  theory containing 
L N H  (Adams,  1982). It is shown in Section 3 that the units covariant  
gravitational field equations admit  a flat vacuum solution if and only if the 
L N H  "field" has the canonical L N H  (Adams,  1983) form of 
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where t o is related to the value of the cosmological constant A 0 today in A 
units by 

t o = ( 3 / A o )  1/2 (2) 

and the cosmological constant is positive. This remarkable result means that 
while flat space-time quantum field theory still predicts A 0 * 0, the gravita- 
tional field equations admit a flat vacuum solution thus resolving the above 
dilemma. More significant is the fact that this allows a reinterpretation of 
the q0 "field" of LNH. One conceives of q0 as being a reflection of a 
time-dependent vacuum state. The energy of the vacuum state is decreasing 
relative to the energy of matter states. Hence the energy of matter states is 
increasing relative to the vacuum. This accounts for the various canonical 
LNH phenomena of accelerating particles, blue-shifting photons, and in- 
creasing particle number. 

The reader unfamiliar with sign conventions, notation, or the units 
covariant formalism is referred to Paper I for details. 

2. COSMOLOGICAL CONSTANT AND QUANTUM PHYSICS 

During Einstein's original cosmological investigations he noticed that 
general relativity (without A) only allowed dynamically expanding or 
contracting isotropic, homogeneous Universes. Since the dominant philoso- 
phy of the day required a static Universe, Einstein (1917) noted that this 
could be achieved by the introduction of the cosmological constant A into 
his field equations. After Hubble's (1929) discovery of the linear relation- 
ship between galactic red shift and galactic distance it was realized that the 
natural interpretation of such observations was that the Universe is in a 
state of dynamical expansion. Had Einstein not bowed to philosophy he 
would have predicted the dynamical nature of the Universe several years 
before this was actually discovered. Einstein was so piqued by this result 
that he called the introduction of A "the biggest blunder of my life" (quoted 
in Misner et al., 1973, p. 410). 

Unfortunately, many workers took this statement to mean that there 
are two theories of gravity, one being general relativity (Einstein's preferred 
theory) without A, and the other with A. This is false. The existence of A 
within the formal structure of general relativity is mandated by the logical 
structure of the theory itself. The va lue  of A may well be zero as apparently 
believed by Einstein and advocated by others (Misner et al., 1973), but this 
is a matter to be determined by observation (Hickson and Adams, 1979) not 
philosophy. 
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Fifty years ago the cosmological constant was little more than a 
constant of integration in general relativity. The source of gravity is the 
energy tensor T ~'~. T"~;~ = 0. Hence the gravitational part of the gravita- 
tional field equations must also have zero divergence. The principle of 
equivalence requires that gravity be related to space-time geometry. There 
are exactly two geometrical tensors containing no higher than second 
derivatives with zero divergence: the Einstein tensor and the metric tensor. 
The simplest possible gravitational theory postulates a linear relationship 
among these three tensors so 

G~,,, + A g ~  + 87rGT~,~ = 0 (3) 

is the field equation for general relativity with A and G arbitrary constants 
to be fixed by observation. Observation requires G to be the Newtonian 
gravitational constant. Observation has not yet determined the value of A, 
although one can say (Misner et al., 1973, p. 411) 

IAl/8rr _< 10 -sT cm -2 (4) 

Today one approaches theories of gravity from a different point of 
view, viz., gauge field theories. Central to a self-consistent formulation of 
gauge field theories of gravity is the Gauss-Bonnet-Cern theorem (Spivak, 
1975). However, this theorem is valid only when applied to a compact group 
(Spivak, 1975). This means that the underlying gauge theory group for a 
gauge theory of gravity must be compact, a condition not satisfied by the 
Poincar6 group. The simplest compact generalization of the Poincar6 group 
is the de Sitter group and use of this group (MacDowell and Mansouri, 
1977) automatically introduces the cosmological constant into the final 
theory. 

Some workers have tried to avoid this by using the Poincar6 group or 
groups containing the Poincar6 group and arbitrarily requiring that certain 
"curvatures" vanish in order to obtain self-consistency (Kaku et al., 1977). 
However, the self-consistent way to incorporate such a restriction into a 
variational principle is through use of a Lagrange multiplier. When this is 
done the Lagrange multiplier becomes the cosmological constant. Conse- 
quently, while one could debate the inclusion of A in (3) on philosophical 
grounds 30 years ago, today one realizes that the theory itself requires A 
regardless of philosophy. 

Zel'dovich (1968) has speculated that by taking the A term from the 
left-hand side of (3) to the right-hand side one can interpret A as being the 
ground-state energy of the vacuum. Hence setting A = 0 is equivalent to 
asserting that the ground-state energy of the vacuum is zero. Since the 
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vacuum by definition is empty, this seems to be a reasonable assumption. 
However, the vacuum is only empty in the sense that its contribution to T ~ 
is zero. It is quite possible that the vacuum state interacts with space-time 
through self-polarization effects so as to create an effective energy tensor 
Ag ~ so far as the gravitational field is concerned. This would mean that 
even in empty space-time (T ~ = 0) equation (3) reads 

R , .  = Ag . .  (5) 

and so does not admit Minkowski space-time as a vacuum solution. 
This is one reason why constructive quantum field theory in a constant 

(nonzero) curvature space-time (Fronsdal, 1979) is significant because it 
allows one to compare results with quantum field theory in Minkowski 
space-time. If physically significant differences exist these can (in principle) 
be measured. This would allow one to determine via observation whether a 
system in a constant curvature space-time makes transitions among flat 
space-time quantum states, or whether the system is able to exist in fixed 
curved space-time quantum states. 

From this point of view, anyone believing that quantum physics should 
be based on the structure of Minkowski space-time and not the structure of 
de Sitter space-time would prefer A = 0 in (5). Further, since the calcula- 
tions leading to nonzero A were based on flat space-time quantum physics a 
question of self-consistency arises. Is it reasonable to use flat space-time 
quantum states to predict an effect which eliminates the possibility of a flat 
vacuum? 

3. T H E  LNH FIELD 

In previous papers (Adams, 1982, 1983) it was found that in the units 
covariant formalism all the LNH effects could be mediated through intro- 
duction of a measurable scalar "field" r In A units the gravitational 
field equations became 

*Gz. + Ag~,,~ + 8rrGT~,~ = 0 (6) 

in place of (3) where 

A = Ao(~p/%)  2, G = Go(%/rp) g (7) 

g is a constant parameter, and *G~ is the units covariant Einstein tensor 
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with/3 = % In an empty space-time (T ~'' = 0) this becomes 

a ~ + 2  q~ - 4  2 _gX.  Ao(cp/tpo) 2 = 0  (8) 
cp qo2 

Just as in the discussion of the cosmological constant in Section 2, 
those people wishing to base quantum physics on flat space-time quantum 
states would prefer to have G~ = 0 in (8). Just as in standard physics, 
calculations based on flat space-time quantum states can lead to a nonzero 
A. However, now there is a possible way out of this dilemma if one can find 
qffx) which cancels the effects of A in (8) with G,~ = 0. 

In the limit of empty flat space-time (T "~ ~ 0, R~oa ~ 0) the Universe 
is still isotropic and homogeneous. Hence there exists a reference frame such 
that cp = r Taking the (00) component of (8) with G~ = 0 gives 

(~)2 = -~(~0)2 (9) 

while taking the trace of (8) gives 

2 ~  ~2 (q~)2 
qo qo 2 = A O  qo o (lo) 

The (0) components of (8) are linear combinations of (9) and (10). Equation 
(9) immediately requires A o >/0. Hence 

 0--5 = _+ ( l l )  

so the unique nontrivial (qo * const) solution is 

ep(t) = +_ ePo(to/t  ) 

to = ( 3 / A o )  v2 

(12a) 

(12b) 

where the time origin was chosen so that cp ~ +_ oo as t ~ 0. Differentiating 
(11) and use of (9) shows that (10) is not an independent equation, so (12) is 
the general solution. 

This is a remarkable result in that (choosing + qo 0 > 0) this is precisely 
the canonical LNH (Adams, 1983) value for ~(x).  This allows a reinterpre- 
tation of the meaning of % As emphasized by Canuto and Lee (1977), the 
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calculation of A o from first principles, while beset with uncertainty, does 
lead to a relatively large value of A 0 for hot Universe models. They suggest 
that A o decreases with cosmic epoch due to the cooling of the Universe with 
expansion. The required time dependence is precisely given by (7) with (12). 
Consequently, the scalar "field" ~o could be a compensating effect which is a 
macroscopic manifestation of a time- (temperature-) dependent vacuum 
state in spontaneous symmetry breaking gauge theories. The compensating 
cp "field" is necessary in order that quantum physics be based on flat 
space-time vacuum states, or alternatively, the fact that Nature is based on 
flat space-time quantum states induces a compensating ~ "field". The 
cosmological constant A 0 is nonzero but its effect on space-time structure is 
compensated by % 

4. SUMMARY AND DISCUSSION 

The units covariant gravitational field equations containing LNH have 
been examined in A units in the limit of empty space-time (T "~ = 0). It was 
shown that a flat space-time is admitted as a solution if and only if r takes 
the canonical LNH form 

~p = CPo( t o /  t ) (13a) 

with 

g =  - 1  (13b) 

to = (3 /A o),/2 (13c) 

where A 0 is the necessarily positive value of the cosmological constant today 
in A units. 

This eliminates the dilemma existing in standard physics where flat 
space-time quantum physics leads to the prediction of a nonzero value for A 
so the empty space-time field equations do not admit a flat space-time 
solution. In this theory, in A units cp is a "compensating field" which allows 
an empty flat space-time solution even though a nonzero value for A is still 
predicted based on flat space-time quantum physics. 

If ~ is just a reflection of a time-dependent vacuum state this would 
explain why ~ affects quantum dynamics but not quantum kinematics. The 
energy of the vacuum state is decreasing in time in A units. This shows up as 
a time-dependent A in A units. But by definition in A units quantum 
kinematics are not time dependent. One concludes that the energy dif- 
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ference between various matter quantum states and the vacuum state is 
increasing with time. Hence, particles speed up (Adams, 1982), photons get 
bluer (Adams, 1983) particle numbers increase (Adams, 1982, 1983). All 
these phenomena are manifestations of LNH and all can be "explained" in 
terms of the energy of a quantum system increasing in time relative to the 
vacuum state. The sole purpose of qo is to reflect this changing vacuum state. 
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